On Contractively Complemented Subspaces

نویسنده

  • IOANNIS GASPARIS
چکیده

Abstract. It is shown that for an L1-predual space X and a countable linearly independent subset of ext(BX∗) whose norm-closed linear span Y in X∗ is w∗-closed, there exists a w∗-continuous contractive projection from X∗ onto Y . This result combined with those of Pelczynski and Bourgain yields a simple proof of the Lazar-Lindenstrauss theorem that every separable L1-predual with non-separable dual contains a contractively complemented subspace isometric to C(∆), the Banach space of functions continuous on the Cantor discontinuum ∆. It is further shown that if X∗ is isometric to l1 and (e ∗ n) is a basis for X∗ isometrically equivalent to the usual l1-basis, then there exists a w∗-convergent subsequence (e∗mn) of (e ∗ n) such that the closed linear subspace of X∗ generated by the sequence (e∗m2n − e ∗ m2n−1 ) is the range of a w∗-continuous contractive projection in X∗. This yields a new proof of Zippin’s result that c0 is isometric to a contractively complemented subspace of X.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on Complemented Subspaces of Von-neumann Algebras*

In this note we include two remarks about bounded (not necessarily contractive) linear projections on a von Neumann-algebra. We show that if M is a von Neumann-subalgebra of B(H) which is complemented in B(H) and isomorphic to M ⊗ M then M is injective (or equivalently M is contractively complemented). We do not know how to get rid of the second assumption on M. In the second part,we show that ...

متن کامل

Weak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups

Let S be a locally compact foundation semigroup with identity and                          be its semigroup algebra. Let X be a weak*-closed left translation invariant subspace of    In this paper, we prove that  X  is invariantly  complemented in   if and  only if  the left ideal  of    has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenab...

متن کامل

Representation of Contractively Complemented Hilbertian Operator Spaces on the Fock Space

The operator spaces Hk n 1 ≤ k ≤ n, generalizing the row and column Hilbert spaces, and arising in the authors’ previous study of contractively complemented subspaces of C∗-algebras, are shown to be homogeneous and completely isometric to a space of creation operators on a subspace of the anti-symmetric Fock space. The completely bounded Banach-Mazur distance from Hk n to row or column space is...

متن کامل

Representations of locally compact groups on QSLp-spaces and a p-analog of the Fourier–Stieltjes algebra

For a locally compact group G and p ∈ (1,∞), we define Bp(G) to be the space of all coefficient functions of isometric representations of G on quotients of subspaces of Lp spaces. For p = 2, this is the usual Fourier–Stieltjes algebra. We show that Bp(G) is a commutative Banach algebra that contractively (isometrically, if G is amenable) contains the Figà-Talamanca–Herz algebra Ap(G). If 2 ≤ q ...

متن کامل

Contractively Complemented Subspaces of Pre-symmetric Spaces

In 1965, Ron Douglas proved that if X is a closed subspace of an L-space and X is isometric to another L-space, then X is the range of a contractive projection on the containing L-space. In 1977 Arazy-Friedman showed that if a subspace X of C1 is isometric to another C1-space (possibly finite dimensional), then there is a contractive projection of C1 onto X. In 1993 Kirchberg proved that if a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000